Highly efficient in vitro photodynamic inactivation of Mycobacterium smegmatis.
نویسندگان
چکیده
OBJECTIVES Efforts to control tuberculosis (TB) have been hampered by the emergence of multiple-drug resistant strains, necessitating pursuit of alternative approaches to the current antibiotic-based treatments. Herein, we explore the feasibility of photodynamic inactivation (PDI) of mycobacteria. METHODS In vitro PDI studies employing Mycobacterium smegmatis as a surrogate for Mycobacterium tuberculosis were performed examining photosensitizer (PS) type, concentration and light dose. M. smegmatis was grown to a concentration of 10(8) colony forming units (cfu) per mL, resuspended in PBS-0.5% Tween-80-containing buffer, incubated with the PS for 5 min and subsequently illuminated with white light (400-700 nm) at a fluence rate of 60 mW/cm(2) for 1, 5, 15 or 30 min (equivalent to 3.4, 18, 54 or 108 J/cm(2)). The percentage survival was determined by the ratio of the colony count from illuminated and non-illuminated control cell suspensions. The PSs examined were 5,10,15,20-tetrakis(1-methyl-4-pyridinyl)porphyrin tetratosylate (TMPyP), 5,10,15,20-tetrakis(4-N,N,N-trimethylanilinium)porphyrin tetrachloride (TNMAP), methylene blue (MB), 5,10,15,20-tetrakis(4-sulphonatophenyl)porphyrin (TSPP), 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin-Pd(II) (TCPP-Pd) and phthalocyanine tetrasulphonic acid (PhCS). RESULTS Our best results demonstrate that PDI of M. smegmatis can achieve a noteworthy 5-6 log unit reduction in cfu (99.999% + viable cell eradication) when cationic PSs are employed in the nanomolar concentration range. Anionic PSs did not effectively mediate PDI of mycobacteria due to their inability to associate with the negatively charged mycobacterial cell membrane. CONCLUSIONS PDI of M. smegmatis was found to be highly efficient in reducing the number of viable cells in vitro when cationic PSs were employed.
منابع مشابه
The Role of Cytochrome Bd in Mycobacterium Smegmatis in Protection against Reactive Oxygen Species and Antibacterials
Targeting oxidative phosphorylation recently has received strong interest as new strategy for combating drug-resistant Mycobacterium tuberculosis. Several components of oxidative phosphorylation such as the type-II NADH dehydrogenase, the cytochrome bc1 complex and ATP synthase have been exploited as target and drugs inhibiting these complexes presently are in clinical development. However, the...
متن کاملReconstitution of Protein Translation of Mycobacterium Reveals Functional Conservation and Divergence with the Gram-Negative Bacterium Escherichia coli
Protein translation is essential for all bacteria pathogens. It has also been a major focus of structural and functional studies and an important target of antibiotics. Here we report our attempts to biochemically reconstitute mycobacterial protein translation in vitro from purified components. This mycobacterial translation system consists of individually purified recombinant translation facto...
متن کاملMICROBIAL TRANSFORMATION OF CHOLESTEROL BY MYCOBACTERIUM SMEGMATIS
Mycobacterium smegmatis PTCC 1307 (CIP 73.26) was used as a microbial agent to produce androsta-1,4-diene-3,17-dione (ADD) and androst-4-ene-3,17-dione, two useful precursors in the synthesis of steroid drugs. The side chain of cholesterol, as the substrate, was selectively cleaved in the presence of five enzyme inhibitors. An intermediate structure with intact side chain, cholest-4-ene-3-one, ...
متن کاملAntimycobacterial activity of fruit of Zanthoxylum acanthopodium DC against Mycobacterium smegmatis
Objective: Fruits of lemon pepper (Zanthoxylum acanthopodium DC., Rutaceae) have been traditionally used as a spice and in folk medicine for treatment of diarrhea and stomachache. Stomachache could be associated with mycobacterial infection. The present study was designed to investigate the activity of Z. acanthopodium fruits against a non-infectious Mycobacterium smegmatis and to identify the ...
متن کاملAntiviral, Antifungal and Antibacterial Activities of a BODIPY-Based Photosensitizer.
Antimicrobial photodynamic inactivation (aPDI) employing the BODIPY-based photosensitizer 2,6-diiodo-1,3,5,7-tetramethyl-8-(N-methyl-4-pyridyl)-4,4'-difluoro-boradiazaindacene (DIMPy-BODIPY) was explored in an in vitro assay against six species of bacteria (eight total strains), three species of yeast, and three viruses as a complementary approach to their current drug-based or non-existent tre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of antimicrobial chemotherapy
دوره 64 4 شماره
صفحات -
تاریخ انتشار 2009